

Open Energy Family

Open Energy Metadata (OEMetadata): Publishing Energy Data Enriched with Ontology References

Development of a state-of-the-art metadata standard for energy, climate and modelling data

Objectives and Context

Open Energy Family and **Open Energy Platform (OEP)**

Table

Review

Show 10 🗸 entries

Graphs -

The Open Energy Family is a framework for research data management and collaborative development. The OEP is a community database for open data that increases transparency, reproducibility and ensures quality in energy system research.

Related Project Tutorials Factsheets API & Python ORM **Open Energy Ontology Open Metadata Integration Open Process Integration** Platform

<u>SIROP</u>

This research project develops and improves features to represent energy system scenarios and make the heterogenous energy scenarios comparable and interoperable.

The **Open Energy Ontology** is a

domain ontology of the energy system modelling context. It contains a formal naming and a definition of classes, energy and climate research.

properties and their relationships. It serves as a reference for concepts, terms and definitions in

It describes the content, structure and of adjacent files or database tables. In its latest version (v1.5.1) we have refined it to allow references to ontologies.

The number of energy scenario and data publications is growing rapidly. However, the data

id 🔺	model	scenario	• region (type	year	generating_capacity	full_load_hours	nominal_investment	rotor_diameter	hub_hight
1	dea_technology_data_generation	wind_turbine_2015	Europe	onshore	2015	3.1	3100	1.326	106	85
2	dea_technology_data_generation	wind_turbine_2020	Europe	onshore	2020	4.2	3400	1.119	130	85
3	dea_technology_data_generation	wind_turbine_2030	Europe	onshore	2030	5	3600	1.036	145	100
4	dea_technology_data_generation	wind_turbine_2040	Europe	onshore	2040	5.5	3700	0.978	155	105
5	dea_technology_data_generation	wind_turbine_2050	Europe	onshore	2050	6	3800	0.963	165	110
6	dea_technology_data_generation	wind_turbine_2020_uncertainty_lower	Europe	onshore	2020	2	2000	0.77	90	85
7	dea_technology_data_generation	wind_turbine_2020_uncertainty_upper	Europe	onshore	2020	6	4000	1.156	130	120
8	dea_technology_data_generation	wind_turbine_2050_uncertainty_lower	Europe	onshore	2050	1.5	2000	0.796	100	85
9	dea_technology_data_generation	wind_turbine_2050_uncertainty_upper	Europe	onshore	2050	8	4500	1.193	150	150
10	dea_technology_data_generation	wind_turbine_2015	Europe	offshore	2015	8	4400	2.86	164	103
howing	1 to 10 of 18 entries								Previous	1 2 Next

The OEO is openly eveloped on GitHub by a oss-project community. helps standardizing nguage and terminology. e data annotation allows exible, content-oriented ta integration and gregation. It adds the ssibility of enhanced earching functions and logical querying across datasets.

utilized is often not well described. Therefore, accessible, reusable, and interpretable metadata is required. We believe the strength of the OEMetadata facilitates better reproducibility and productivity in energy research.

Data and Metadata Review We developed a community driven review process to ensure completeness, comparability, and quality of the published material. The process is based on Open Peer Review and is documented and linked with the data.

ID	Кеу	Description	Example			
1	name	A file name or database table name.	rli_dea_td_generation_wind_turbine			
2	title	A human readable full title including author.	RLI- Techn. Data for Generation of Electricity			
4	description	A description or abstract of the data package.	Data catalogue for ren. Technologies			
6	subject	An array of objects with topics of the data in OEO terms.	OEO_0000044: wind energy converting unit			
9	context	About the research project like homepage and funding.	grantNo: 03El1005D			
19	spatial	The spatial context like location or extend and resolution.	Europe			
11	temporal	Temporal information about the reference date or timeseries.	Reference: 2021; Start: 2015; End: 2050			
12	sources	Used and underlying sources of the data and metadata.	Danish Energy Agency - Technology Data			
13	licenses	License(s) under which the data is provided.	СС-ВҮ-4.0			
14	contributors	People who contributed to the data or metadata.	2022-02-11 Create data and Metadata			
15.6	fields	An array (list) describing all columns.				
15.6.1	name	The name of the column (field).	generating_capacity			
15.6.2	description	A text describing the field.	Generation capacity for one unit			
15.6.3	type	The data type of the field.	decimal			
15.6.4	unit	Preferably a SI unit.	MW			
15.6.5	isAbout	An array of objects with describe the field in OEO terms.	OEO_00230002: declared net capacity			
15.6.6	valueReference	Extended description of the values in the column in OEO terms.	type - OEO_0000447: wind farm			
15.7	foreignKeys	A foreign key is a field that refers to a column in another table.	null			
18	review	Based on the completeness and quality badges are rewarded.	Platinum			

https://openenergyplatform.org/ontology/oeo/OEO_0000044 Definition:

A <u>wind energy converting unit</u> is a power generating unit that uses wind energy.

https://openenergyplatform.org/ontology/oeo/OEO_0023000

Definition:

Declared net capacity is a power value stating the maximum power a **power generating unit** or **a power plant** can deliver to the **electrical grid**. It equals the sum of the rated powers of all plant generators minus all power used internally within the plant.

https://openenergyplatform.org/ontology/oeo/OEO_0000447 Definitions: •An <u>onshore wind farm</u> is a **wind farm** that is build on land.

•An offshore wind farm is a wind farm that is build in a **body of water**, usually the ocean.

Access & Publication

Authors & Copyright

Open Energy Platform

https://openenergy-platform.org/

GitHub

https://github.com/OpenEnergyPlatform

Booshehri, M., Emele, L., Flügel, S., Förster, H., Frey, J., et.al (2021). Introducing the Open Energy Ontology: Enhancing data interpretation and interfacing in energy systems analysis. Energy and AI, 5, 100074.

https://doi.org/10.1016/j.egyai.2021.100074

Supported by:

Federal Ministry

on the basis of a decision

by the German Bundestag

for Economic Affairs

and Climate Action

Acknowledgment

Ludwig Hülk, Christian Hofmann, Christoph Muschner, Jonas Huber, Stephan Uller

Mirjam Stappel

Hannah Förster, Lukas Emele, Christian Winger

Adel Memariani, Martin Glauer, Till Mossakowski, Janna Hastings, Fabian Neuhaus

Contact

Please cite as

"Open Energy Metadata: Publishing Energy Data Enriched with Ontology References" @ Reiner Lemoine Institut @ Fraunhofer IEE @ Öko-Institut @ Otto-von-Guericke-Universität Magdeburg | CC-BY-4.0

Fraunhofer Energiewirtschaft und Energiesystemtechnik Öko-Institut

Ludwig.Huelk@rl-institut.de

Reiner Lemoine Institut

Otto-von-Guericke-Universität Magdeburg